Modbus Communications Revision 5

Safety Cube400

1 Safety

The *Cube400* is intended for connection to dangerous voltages giving a risk of electric shock. Refer to the safety/installation instructions in the *Cube400 Installation Guide* before connecting the communications.

WARNING

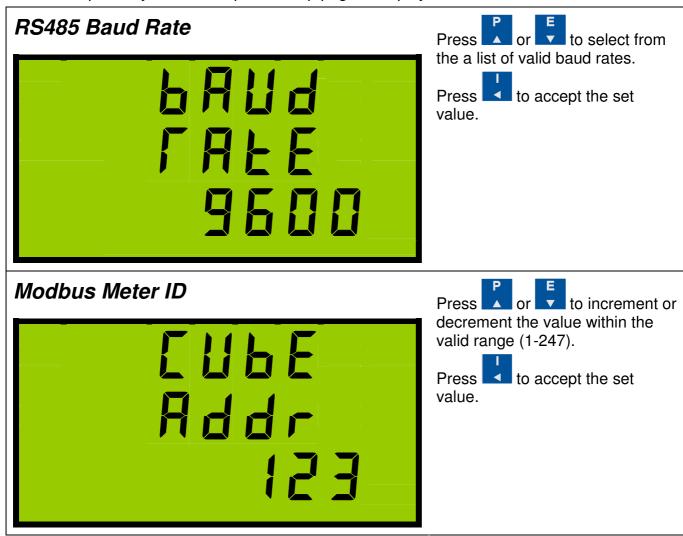
The meter contains no user serviceable parts. Installation and commissioning should only be carried out by qualified personnel

For further Information contact the manufacturer:

Address: Northern Design (Electronics) Ltd: 228 Bolton Road, Bradford, West Yorkshire, BD3 0QW. (UK)

Web: http://www.ndmeter.co.uk
Email: sales@ndmeter.co.uk

Page 2 Cube 400


2 Programming

Meters fitted with the Modbus option have two additional stages in the front panel programming menu.

To enter programming mode:

Hold and together for 5 Seconds.

Press repeatedly until the required setup page is displayed.

For full information on entering and using programming mode refer to the latest "*Cube400 Installation Guide*".

Page 3 Cube 400

Connection Cube400

3 Connection

3.1 Cable Selection

A dedicated, screened twisted pair cable is required to provide basic RS485 connection. A second twisted pair may be used for 0V connection if required. The cable should be chosen to suit the data rate and maximum length to be installed. The EIA RS-485-A standard provides curves that relate cable length to data rate for 24 AWG screened, twisted pair, telephone cable with a shunt capacitance of 50pf/m. For baud rates up to 19,200 the standard suggests a maximum length of 1200m for this type of cable. If other types of cable are to be used it is recommended that the cable supplier is consulted as to the suitability for use with RS485 to 19.200 baud.

3.2 Signal 0V and Cable Shield

A signal 0V termination is provided on each meter. Although RS485 does not strictly require a signal 0V, it is recommended this is connected as shown in the diagram below. This creates a known reference for the isolated RS485 system thereby reducing potential common-mode errors in the meter's RS485 driver circuit.

A cable shield is used to attenuate noise picked up from external sources. This should be continuous, and cover as much of the signal pairs as possible. It is recommended that the shield should be connected to ground at the host (PC) only. The cable shield should <u>not</u> be used as the 0V connection.

3.3 Terminating Resistors

In order to minimise signal errors due to noise over long cable lengths, terminating resistors may be fitted. These match the RS485 device impedance to that of the cable. Two 120Ω resistors, one at the host port terminals and the other at the most remote meter terminals are recommended for this purpose.

3.4 Connection To Meters

The bus wires should be taken to meters at each location for termination, using the meter terminals as a loop in-out connection. 3-Pairs of terminals, internally shorted, are provided for convenience. The use of spurs should be avoided wherever possible.

3.4.1 Basic Connection

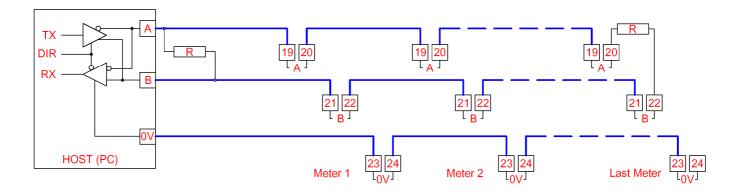


Figure 3-1 Basic RS485 Bus Network

Page 4 Cube 400

Protocol Cube400

4 Protocol

4.1 Modbus Commands

The *Cube400* meter supports the following standard Modbus commands:

Command	Function	Broadcast
03	Read Multiple Holding Registers	No
04	Read Multiple Input Registers	No
06	Preset a Single Register	Yes
08 (SF=00)	Sub Function 00 only (Loop Back)	No
16	Preset Multiple Registers	Yes

4.2 Exception Responses

If the meter receives a Modbus command, with no errors and a valid address, it will attempt to handle the query and provide an appropriate response. If the meter cannot handle the query a standard Modbus exception response is sent (except broadcast queries). An exception response is characterised by its function byte which has 80H added to that sent in the query. The following exceptions codes are supported:

Code	Function		
1	Preset data is out of range for parameter		
2	Function cannot access requested register address		

Page 5 Cube 400

5 Modbus Data Tables

5.1 Using The Tables

For convenience, meter data is organised in tables of like information with the same format. An entire table may be read with a single Modbus *command 3* (Holding Registers). For compatibility with the Modbus standard each register contains a single data *Word* (16 bits). Data in the meter is stored as:

Unsigned Integer (U-INT)

16-bit data in the range 0 to 65,535. This is used for parameters such as CT prim as this can never be negative.

Signed Integer (S-INT)

16-bit data in the range -32,768 to +32,767. This is used for parameters such as instantaneous kW, which may have a negative value indicating export power.

Long Integer (LONG)

32-bit data in the range 0 to 4,294,967,295. This is used for parameters such as kWh, which may have large values. Each LONG requires two consecutive Modbus data words. Standard software often handles long integer reads, however, a LONG may be calculated from the individual data words as:

LONG = $(65536 \times High \ Word) + Low \ Word$

5.2 Energy Registers

Doto	Modbus		
Data		Data	Access
Address	Register	2464	7.00000
512	40513	eScale High Word	Read Only
513	40514	eScale Low Word	nead Only
514	40515	kWh High Word	Read/Write
515	40516	kWh Low Word	neau/white
516	40517	kVAh High Word	Read/Write
517	40518	kVAh Low Word	neau/wnie
518	40519	kvarh Inductive High Word	Read/Write
519	40520	kvarh Inductive Low Word	neau/wnie
520	40521	kvarh Capacitive High Word	Read/Write
521	40522	kvarh Capacitive Low Word	neau/wnie
522	40523	Import kvarh High Word	Read/Write
523	40524	Import kvarh Low Word	neau/wnie
524	40525	Export kWh High Word	Read/Write
525	40526	Export kWh Low Word	neau/wnie
526	40527	Export kvarh High Word	Read/Write
527	40528	Export kvarh Low Word	neau/wille
528	40529	Hours Run High Word	Read/Write
529	40530	Hours Run Low Word	neau/wille

Page 6 Cube 400

Energy registers are stored as long integer representations of the number displayed on the meter without decimal point or scaling. For example if the meter displays 123456.78kWh, the Holding Registers 40515-40516 will contain the long integer 12345678. This number may be scaled in Wh or kWh, using eScale as:

Wh = Holding Reg[40516] x
$$10^{(eScale-3)}$$

kWh = Holding Reg[40516] x $10^{(eScale-6)}$

The eScale constant is set, along with the kWh register resolution and scaling, by the CT primary and nominal voltage programmed settings. The display scaling and eScale therefore remain constant once a meter is installed and commissioned. A read of eScale High Word always returns zero.

Example:

If the meter displays 1234567.8 kWh then eScale would be 5 and the Holding Registers 40515-40516 would contain 12345678.

The host would calculate the scaled energy reading as:

12345678 x
$$10^{(5-3)}$$
 = 12345678 x 100 = 1,234,567,800 Wh or 12345678 x $10^{(5-6)}$ = 12345678 x 0.1 = 1,234,567.8 kWh

The host programmer could take two approaches to interpreting the data from the meter:

- ✓ Enter a fixed scaling factor (x100 for Wh or x0.1 for kWh in above example). This would be set for each meter in the system based on its display after commissioning.
- ✓ Use the transmitted eScale constant, as shown above, to automatically position the decimal point in the interpreted result.

Page 7 Cube 400

5.3 Instantaneous Meter Values

Data Address	Modbus Register	Data	Scaling
2816	42817	System kW	Кр
2817	42818	System kVA	Кр
2818	42819	System kvar	Кр
2819	42820	System PF	1000 = 1.000
2820	42821	Frequency	500 = 50.0
2821	42822	Phase 1 Volts	Kvp
2822	42823	Phase 1 Amps	Ki
2823	42824	Phase 1 kW	Кр
2824	42825	Phase 2 Volts	Kvp
2825	42826	Phase 2 Amps	Ki
2826	42827	Phase 2 kW	Кр
2827	42828	Phase 3 Volts	Kvp
2828	42829	Phase 3 Amps	Ki
2829	42830	Phase 3 kW	Кр
2830	42831	Phase 1 PF	1000 = 1.000
2831	42832	Phase 2 PF	1000 = 1.000
2832	42833	Phase 3 PF	1000 = 1.000
2833	42834	Ph1-Ph2 Volts	Kvl
2834	42835	Ph2-Ph3 Volts	Kvl
2835	42836	Ph3-Ph1 Volts	Kvl
2836	42837	Neutral Current	Ki
2837	42838	Amps Scale Ki	-
2838	42839	Phase Volts Scale Kvp	-
2839	42840	Line Volts Scale Kvl	-
2840	42841	Power Scale Kp	-

Note: All registers in this table have read only access.

Page 8 Cube 400

Instantaneous readings are provided as signed integer values with no decimal point or legend (e.g. kW or MW). Scaling factors are provided to enable conversion of the raw data to real numbers in basic unit form (amps, volts, watts, VA, or var). These scaling factors are constant values calculated as a function of CT and PT Primary programming.

To convert raw data to real numbers:

 $R = I \times 10^{(K-3)}$

Where: I = Integer number

K = Relevant Scaling Factor

R = Real number result

Example:

If the meter is programmed with CT Primary=50Amps and PT Primary=415V:

LCD values would be scaled as: 50.00A, 240.0V, 415.7V_{LL} and 36.00kW.

Scaling factors would be: I Scale=1, *Kvp*=2, *Kvl*=2, *Kp*=4.

Integer Values would be transmitted as: 5000, 2400, 4157 and 3600

Amps would be calculated as $5000 \times 10^{(1-3)} = 5000/100 = 50.00A$

Phase Volts would be calculated as $2400 \times 10^{(2-3)} = 2400/10 = 240.0 \text{V}$

Line Volts would be calculated as $4157 \times 10^{(2-3)} = 4157/10 = 415.7V$

3-Ph Power would be calculated as $3600 \times 10^{(4-3)} = 3600 \times 10 = 36000 \text{W}$

Page 9 Cube 400

5.4 Additional Instantaneous Values

Data Address	Modbus Register	Data	Scaling
3072	43073	Phase 1 kVA	Кр
3073	43074	Phase 2 kVA	Кр
3074	43075	Phase 3 kVA	Кр
3075	43076	Phase 1 kvar	Кр
3076	43077	Phase 2 kvar	Кр
3077	43078	Phase 3 kvar	Кр

Note: All values in this table are Signed Integers with read only access.

5.5 Peak Hold Values

Data Address	Modbus Register	Data	Scaling
3328	43329	Peak Hold Ph1 Amps	Ki
3329	43330	Peak Hold Ph2 Amps	Ki
3330	43331	Peak Hold Ph3 Amps	Ki
3331	43332	Peak Hold Ph1 Volts	Kvp
3332	43333	Peak Hold Ph2 Volts	Kvp
3333	43334	Peak Hold Ph3 Volts	Kvp
3334	43335	Peak Hold kW Demand	Kp + 1
3335	43336	KW Demand Period	1-60 Minutes
3336	43337	KW Demand	Kp + 1
3337	43338	KVA Demand	Kp + 1
3338	43339	Peak Hold kVA Demand	Kp + 1
3339	43340	Kvar Demand	Kp + 1
3340	43341	Peak Hold kvar Demand	Kp + 1

Note: All values in this table are Signed Integers (amps & Volts parameters) and unsigned integers (power demands) with read/write access except 43337, 43338 and 43340 which have read only access.

Page 10 Cube 400

5.6 Meter Setup

Data Address	Modbus Register	Data	Scaling
3584	43585	CT Primary	10 - 25,000 Amps
3585	43586	Nominal Volts	10 - 55,000 Volts
3586	43587	Pulse 1 Rate	1-1000 Counts/Pulse
3587	43588	Pulse 2 Rate (= Pulse 1 Rate)	1-1000 Counts/Pulse
3588	43589	Baud	96 = 9600baud etc
3589	43590	Modbus ID	0 – 247
3590	43591	Meter Model	Cube400 = 400
3591	43592	Meter Type	Basic Cube400 = 1
3592	43593	Firmware Version	Eg. $0x14 = 1.04$
3593	43594	Current Demand Period	1 = 10Sec, 2=20Sec etc
3594	43595	Pulse ON Time	1 = 100ms, 2=200ms etc
3595	43596	Security Code	0 - 9999
3596	43597	Hours Run Limit	0-9999kW (scaled as LCD)
3597	43598	PT Scaling Factor	1 – 10

Note: All values in this table are unsigned Integers with read/write access except 43591-43593 which are read only.

The overall PT Primary is calculated as: Nominal Volts X PT scaling factor

5.7 Peak Hold Current/Voltage Demand

Data Address	Modbus Register	Data	Scaling
3840	43841	Peak Ph1 Amps Demand	Ki
3841	43842	Peak Ph2 Amps Demand	Ki
3842	43843	Peak Ph3 Amps Demand	Ki
3843	43844	Peak Ph1 Volts Demand	Kvp
3844	43845	Peak Ph2 Volts Demand	Kvp
3845	43846	Peak Ph3 Volts Demand	Kvp

Note: All values in this table are Unsigned Integers with read/write access.

5.8 Current/Voltage Demand

Data Address	Modbus Register	Data	Scaling
4096	44097	Ph1 Amps Demand	Ki
4097	44098	Ph2 Amps Demand	Ki
4098	44099	Ph3 Amps Demand	Ki
4099	44100	Ph1 Volts Demand	Kvp
4100	44101	Ph2 Volts Demand	Kvp
4101	44102	Ph3 Volts Demand	Kvp

Note: All values in this table are Unsigned Integers with read only access.

Page 11 Cube 400

5.9 Total Harmonic Distortion Values

Data Address	Modbus Register	Data	Scaling
4352	44353	V1 % THD	1000 = 100%
4353	44354	V2 % THD	1000 = 100%
4354	44355	V3 % THD	1000 = 100%
4355	44356	I1 % THD	1000 = 100%
4356	44357	I2 % THD	1000 = 100%
4357	44358	I3 % THD	1000 = 100%

Note: All values in this table are Unsigned Integers with read only access.

5.10 Power Demand Values

Data Address	Modbus Register	Data	Scaling
4608	44609	kW Demand	Kp + 1
4609	44610	kVA Demand	Kp + 1
4610	44611	Kvar Demand	Kp + 1
4611	44612	Peak Hold kW Demand	Kp + 1
4612	44613	Peak Hold kVA Demand	Kp + 1
4613	44614	Peak Hold kvar Demand	Kp + 1

Note: All values in this table are signed Integers. Demand values have read only access while peak hold values have read/write access.

Page 12 Cube 400

5.11 Amalgamated Data Table

Data	Modbus	Data	Scaling
Address	Register	IAME I Pale Mand	
7680	47681	KWh High Word	Ke
7681 7682	47682	KWh Low Word	
	47683	KVAh High Word	Ke
7683 7684	47684 47685	KVAh Low Word Kvarh High Word	
	47686		Ke
7685 7686	47687	Kvarh Low Word Export kWh High Word	
7687	47688	Export kWh Low Word	Ke
7688	47689	Phase 1 Amps	
7689	47699		Ki
7690		Phase 2 Amps	Ni
7690	47691 47692	Phase 3 Amps Phase 1 Volts	
			Kun
7692	47693	Phase 2 Volts	Kvp
7693	47694	Phase 3 Volts	
7694	47695	Ph1-Ph2 Volts	IZ. d
7695	47696	Ph2-Ph3 Volts	Kvl
7696	47697	Ph3-Ph1 Volts	F00 F0.0
7697	47698	Frequency	500 = 50.0
7698	47699	Phase 1 PF	
7699	47700	Phase 2 PF	1000 = 1.000
7700	47701	Phase 3 PF	
7701	47702	System PF	
7702	47703	Phase 1 kW	
7703	47704	Phase 2 kW	Kp
7704	47705	Phase 3 kW	
7705	47706	System kW	
7706	47707	Phase 1 kVA	
7707	47708	Phase 2 kVA	Kp
7708	47709	Phase 3 kVA	
7709	47710	System kVA	
7710	47711	Phase 1 kvar	
7711	47712	Phase 2 kvar	— Kp
7712	47713	Phase 3 kvar	
7713	47714	System kvar	
7714	47715	Ph1 Amps Demand	
7715	47716	Ph2 Amps Demand	Ki
7716	47717	Ph3 Amps Demand	
7717	47718	Ph1 Volts Demand	
7718	47719	Ph2 Volts Demand	Kvp
7719	47720	Ph3 Volts Demand	
7720	47721	Peak Ph1 Amps	
7721	47722	Peak Ph2 Amps	Ki
7722	47723	Peak Ph3 Amps	
7723	47724	Peak Ph1 Volts	
7724	47725	Peak Ph2 Volts	Kvp
7725	47726	Peak Ph3 Volts	
7726	47727	kW Demand	
7727	47728	kVA Demand	Kp + 1
7728	47729	kvar Demand	
7729	47730	Peak Hold kW Demand	
7730	47731	Peak Hold kVA Demand	Kp + 1
7731	47732	Peak Hold kvar Demand	
7732	47733	Neutral Current	Ki
7733	47734	Amps Scale Ki	-
7734	47735	Phase Volts Scale Kvp	-
7735	47736	Line Volts Scale Kvl	-
7736	47737	Power Scale Kp	-
7737	47738	Energy Scale Ke	

Note: All values in this table have read only access.

The amalgamated data table provides a copy of key variables in a single table, which may be read with a single Modbus command. The format and scaling of each parameter is identical to that found in the main tables.

Page 13 Cube 400

5.12 V1 Harmonics

Data Address	Modbus Register	Data	Scaling
7936	47937	V1: 2nd Harmonic	1000 = 100%
7937	47938	V1: 3rd Harmonic	1000 = 100%
7938	47939	V1: 4th Harmonic	1000 = 100%
7939	47940	V1: 5th Harmonic	1000 = 100%
7940	47941	V1: 6th Harmonic	1000 = 100%
7941	47942	V1: 7th Harmonic	1000 = 100%
7942	47943	V1: 8th Harmonic	1000 = 100%
7943	47944	V1: 9th Harmonic	1000 = 100%
7944	47945	V1: 10th Harmonic	1000 = 100%
7945	47946	V1: 11th Harmonic	1000 = 100%
7946	47947	V1: 12th Harmonic	1000 = 100%
7947	47948	V1: 13th Harmonic	1000 = 100%
7948	47949	V1: 14th Harmonic	1000 = 100%
7949	47950	V1: 15th Harmonic	1000 = 100%

5.13 V2 Harmonics

Data Address	Modbus Register	Data	Scaling
8192	48193	V2: 2nd Harmonic	1000 = 100%
8193	48194	V2: 3rd Harmonic	1000 = 100%
8194	48195	V2: 4th Harmonic	1000 = 100%
8195	48196	V2: 5th Harmonic	1000 = 100%
8196	48197	V2: 6th Harmonic	1000 = 100%
8197	48198	V2: 7th Harmonic	1000 = 100%
8198	48199	V2: 8th Harmonic 1000 = 100%	
8199	48200	V2: 9th Harmonic 1000 = 100%	
8200	48201	V2: 10th Harmonic	1000 = 100%
8201	48202	V2: 11th Harmonic	1000 = 100%
8202	48203	V2: 12th Harmonic	1000 = 100%
8203	48204	V2: 13th Harmonic	1000 = 100%
8204	48205	V2: 14th Harmonic	1000 = 100%
8205	48206	V2: 15th Harmonic	1000 = 100%

Page 14 Cube 400

5.14 V3 Harmonics

Data Address	Modbus Register	Data	Scaling
8448	48449	V3: 2nd Harmonic	1000 = 100%
8449	48450	V3: 3rd Harmonic	1000 = 100%
8450	48451	V3: 4th Harmonic	1000 = 100%
8451	48452	V3: 5th Harmonic	1000 = 100%
8452	48453	V3: 6th Harmonic	1000 = 100%
8453	48454	V3: 7th Harmonic	1000 = 100%
8454	48455	V3: 8th Harmonic 1000 = 100%	
8455	48456	V3: 9th Harmonic	1000 = 100%
8456	48457	V3 10th Harmonic	1000 = 100%
8457	48458	V3: 11th Harmonic	1000 = 100%
8458	48459	V3: 12th Harmonic	1000 = 100%
8459	48460	V3: 13th Harmonic	1000 = 100%
8460	48461	V3: 14th Harmonic	1000 = 100%
8461	48462	V3: 15th Harmonic	1000 = 100%

5.15 I1 Harmonics

Data Address	Modbus Register	Data	Scaling
8704	48705	I1: 2nd Harmonic	1000 = 100%
8705	48706	I1: 3rd Harmonic	1000 = 100%
8706	48707	I1: 4th Harmonic	1000 = 100%
8707	48708	I1: 5th Harmonic	1000 = 100%
8708	48709	I1: 6th Harmonic	1000 = 100%
8709	48710	I1: 7th Harmonic	1000 = 100%
8710	48711	I1: 8th Harmonic 1000 = 100%	
8711	48712	I1: 9th Harmonic 1000 = 100%	
8712	48713	I1: 10th Harmonic	1000 = 100%
8713	48714	I1: 11th Harmonic	1000 = 100%
8714	48715	I1: 12th Harmonic	1000 = 100%
8715	48716	I1: 13th Harmonic	1000 = 100%
8716	48717	I1: 14th Harmonic	1000 = 100%
8717	48718	I1: 15th Harmonic 1000 = 100%	

Page 15 Cube 400

5.16 I2 Harmonics

Data Address	Modbus Register	Data	Scaling
8960	48961	I2: 2nd Harmonic	1000 = 100%
8961	48962	I2: 3rd Harmonic	1000 = 100%
8962	48963	I2: 4th Harmonic	1000 = 100%
8963	48964	I2: 5th Harmonic	1000 = 100%
8964	48965	I2: 6th Harmonic	1000 = 100%
8965	48966	I2: 7th Harmonic	1000 = 100%
8966	48967	I2: 8th Harmonic	1000 = 100%
8967	48968	I2: 9th Harmonic	1000 = 100%
8968	48969	I2: 10th Harmonic	1000 = 100%
8969	48970	I2: 11th Harmonic	1000 = 100%
8970	48971	I2: 12th Harmonic	1000 = 100%
8971	48972	I2: 13th Harmonic	1000 = 100%
8972	48973	I2: 14th Harmonic	1000 = 100%
8973	48974	I2: 15th Harmonic	1000 = 100%

5.17 I3 Harmonics

Data Address	Modbus Register	Data	Scaling
9216	49217	l3: 2nd Harmonic	1000 = 100%
9217	49218	I3: 3rd Harmonic	1000 = 100%
9218	49219	l3: 4th Harmonic	1000 = 100%
9219	49220	I3: 5th Harmonic	1000 = 100%
9220	49221	I3: 6th Harmonic	1000 = 100%
9221	49222	I3: 7th Harmonic	1000 = 100%
9222	49223	I3: 8th Harmonic 1000 = 100%	
9223	49224	I3: 9th Harmonic 1000 = 100%	
9224	49225	I3: 10th Harmonic	1000 = 100%
9225	49226	I3: 11th Harmonic	1000 = 100%
9226	49227	I3: 12th Harmonic	1000 = 100%
9227	49228	I3: 13th Harmonic	1000 = 100%
9228	49229	I3: 14th Harmonic	1000 = 100%
9229	49230	l3: 15th Harmonic	1000 = 100%

Page 16 Cube 400

5.18 Custom Data Table

This provides a custom table containing 32 Modbus registers, selected and arranged to suit individual requirements.

To set up a custom table first write the Data Addresses of the required parameters to the following Modbus table.

Data Address	Modbus Register	Data	Example	
19200	419201	Custom Address 0	514	kWh High Word
19201	419202	Custom Address 1	<i>515</i>	kWh Low Word
19202	419203	Custom Address 2	516	kVAh High Word
19203	419204	Custom Address 3	517	kVAh Low Word
19204	419205	Custom Address 4	518	kvarh Inductive High Word
19205	419206	Custom Address 5	519	kvarh Inductive Low Word
19206	419207	Custom Address 6	520	kvarh Capacitive High Word
19207	419208	Custom Address 7	521	kvarh Capacitive Low Word
19208	419209	Custom Address 8	522	Import kvarh High Word
19209	419210	Custom Address 9	523	Import kvarh Low Word
19210	419211	Custom Address 10	<i>524</i>	Export kWh High Word
19211	419212	Custom Address 11	<i>525</i>	Export kWh Low Word
19212	419213	Custom Address 12	<i>526</i>	Export kvarh High Word
19213	419214	Custom Address 13	527	Export kvarh Low Word
19214	419215	Custom Address 14	2816	System kW
19215	419216	Custom Address 15	2817	System kVA
19216	419217	Custom Address 16	2818	System kvar
19217	419218	Custom Address 17	2819	System PF
19218	419219	Custom Address 18	2820	Frequency
19219	419220	Custom Address 19	2821	Phase 1 Volts
19220	419221	Custom Address 20	3331	Peak Hold Ph1 Volts
19221	419222	Custom Address 21	2824	Phase 2 Volts
19222	419223	Custom Address 22	3332	Peak Hold Ph2 Volts
19223	419224	Custom Address 23	2827	Phase 3 Volts
19224	419225	Custom Address 24	3333	Peak Hold Ph3 Volts
19225	419226	Custom Address 25	2822	Phase 1 Amps
19226	419227	Custom Address 26	3328	Peak Hold Ph1 Amps
19227	419228	Custom Address 27	2825	Phase 2 Amps
19228	419229	Custom Address 28	3329	Peak Hold Ph2 Amps
19229	419230	Custom Address 29	2828	Phase 3 Amps
19230	419231	Custom Address 30	3330	Peak Hold Ph3 Amps
19231	419232	Custom Address 31	3584	CT Primary

Write 514 to Modbus Register 419201 etc. The Data Addresses may be any valid Modbus register address listed in the above tables. Data Addresses in this table have read/write access.

The corresponding Modbus Parameters pointed to by Data Address 0 – Data Address 31 are available at Modbus Addresses 419457 – 419488 (Data Addresses 19456 – 19487).

Page 17 Cube 400

Safety Cube400

6 Specification

Aux Mains	Internally supplied from Cube400 Auxiliary			
7 Ida IIIdiiio	Requires additional 1W max			
Modbus	RS485 Half duplex, 2 Wires + 0V			
Modbas	RX Load: 1/4 Unit load per meter (max 128 per bus)			
	TX Drive: 32 Unit loads maximum			
	Protocol: Modbus RTU/JBUS, 16-Bit CRC			
	Baud: 4800, 9600, 19200 user programmable			
	Address: 1-247 user programmable			
Isolation	3.5kV (1 minute) RS485 Port from all other circuit			
Performance	Reply: Maximum 250ms			
1 CHOIIIIanoc	Rate: Min 5ms from reply to next request			
	Data: Meter readings & programmable settings			
	Maximum data length 20 Words.			
General	Environmental: Refer to Cube400 specification			
dellerai	Dimensions: Add 10mm to depth of Cube400			
	Terminals: Rising clamp, max wire 4mm2			

E. & O. E.

© Northern Design (Electronics) Ltd, July 2016

Page 18 Cube 400